Natural History: Wheeze from childhood to adulthood

Renato T. Stein

Department of Pediatrics, Pontificia Universidade Católica, Porto Alegre, Brazil.

The recent well designed longitudinal studies which followed children form early in life to adulthood produced a remarkable change in our understanding of the natural history of asthma. It seems established that, in the majority of cases of persistent asthma, the symptoms begin during the preschool years and track significantly thereafter. Moreover, the two longest longitudinal studies of asthma conducted in Australia1 and New Zealand2 have shown that deficits in lung function are already present by 9 years of age among asthmatic children, and that these deficits persist up to adulthood3.

The cohort from New Zealand has followed children from 9 to 26 years of age with questionnaires, pulmonary function tests and allergy testing. At 26 years of age, about 27% of the study participants were still wheezing; in 14.5%, wheezing had persisted from onset; whereas 12.4% presented a remission followed by a relapse by the age of 26 years. These data are consistent with data from Australian studies which found that approximately two thirds of subjects with asthma in the first years of life did not persist with their symptoms during adulthood4,5.

Wheezing was considered to be transient in 21.2% of the participants6. From childhood to adulthood, study participants who were persistent wheezers had consistently lower lung function measurements, when compared with other study participants who never reported any wheezing. No significant differences in FEV1/FVC ratios were observed among children with remission, intermittent wheezing or transient wheezing. Moreover, the slopes of change in FEV1/FVC were similar in each group, indicating that impairment of lung function occurred in early childhood7.

Similar results were observed in an Australian longitudinal study. The children that represented a large population were enrolled at 7 years of age. The results were based on a questionnaire concerning the children's history of asthma and wheezing episodes. Children were classified into four categories: those who never wheezed; those with fewer than five episodes associated with apparent respiratory infection (mild wheezy bronchitis); those with five or more episodes associated with apparent respiratory infections (wheezy bronchitis) and those with wheezing not associated with respiratory infection (asthma). A fifth group of children with severe asthma was added to the same cohort at 10 years of age and evaluations were conducted every 7 years4.

Of the subjects who had mild wheezy bronchitis at 7 years of age, 77% were free of symptoms at 35 years of age, whereas only 23% had frequent or persistent asthma. Of the participants with asthma at 7 years of age, 50% had no recent asthma or infrequent asthma as adults, whereas 50% had frequent or persistent asthma. Importantly, 75% of those who had severe asthma at 10 years of age had frequent or persistent asthma at 35 years of age. The more severe their asthma is, the less likely they are to remit8.

Subjects with asthma and severe asthma at 7 years of age who were followed up to 28 years of age experienced abnormal pulmonary function as adults, although in the participants with mild asthma, the abnormalities were relatively minor. Children with mild wheezy bronchitis and wheezy bronchitis at 7 years of age had no evidence of airway obstruction at 35 years of age. These patterns suggest once again that no significant loss of pulmonary function occurs after the age of 7-10 years up to 35 years of age, even in individuals with severe disease.

Data from the Tucson Children's Respiratory Study suggest that the main loss of lung function occurs very early in life. At 6 years of age, children were classified into four wheezing categories based on the current and previous history of their wheezing symptoms: non-wheezers (children who never wheezed), transient wheezers (at least one lower respiratory tract illness with wheezing during the first 3 years of life but who had no wheezing at 6 years of age), late-onset wheezers (no lower respiratory tract illness with wheezing during the first 3 years of life and wheezing at 6 years of age) and persistent wheezers (at least one lower respiratory tract illness with wheezing during the first 3 years of life and wheezing at 6 years of age).9

Based on pulmonary function measurements made before 3 year of age, non-wheezers and persistent wheezers showed no significant difference in pulmonary function...
parameters. At 6 years of age, however, persistent wheeze
ners had significantly lower pulmonary function compared
with non-wheezerd. This difference was still detected at
11 years of age and recently, the follow-up for these chil
dren was completed and report up to the age of 16 years,
both in terms of lung function and respiratory symptoms
during the school years. Recently, Lowe et al showed that children with a strong
family history of asthma who had become sensitized to
local allergens had significantly lower specific airway con
ductance at age three compared to non-sensitized chil
dren. One could speculate that the early development of
allergic responses in the airways may facilitate a process
of remodelling occurring at a time of very fast lung
growth, before 3 years of age.
Morgan et al have shown that the transient early
wheezers, the largest group of children who wheezed
early in life, were unlikely to wheeze thereafter. How-
ever, these children continue to have lower levels of lung
function. Individuals who enter adult life with lower lev
els of lung function are probably more likely to develop
chronic obstructive pulmonary disease during adult years,
especially if they had lower respiratory illnesses in early
life. Whether transient early wheezers are also predis
dosed to chronic obstructive pulmonary disease is not yet
known.
In summary, many children do not remit from their
asthma and the more severe their asthma is, the less like
ly they are to remit. These data support the concept that
children with mild disease usually remit during adoles
cence, whereas children with severe asthma during the
first decade of life are more likely to present persistent
asthma when they reached adulthood.

Furthermore, the deficits in lung function in asthmatic
children are not present shortly after birth, but seem to be
acquired before 3 years of age. Identifying the factors
that influence these deficits will be decisive for the pre
vention and treatment of asthma.

REFERENCES
1. Freidhoff LR, Marsh DG. Relationship among asthma, serum
IgE and skin test reactivity to inhaled allergens. Int Arch Allergy
bert TW, et al. Outcome of Asthma and Wheezing in the First
Six Years of Life: Follow-up through Adolescence. Am J Respir
GG. Factors in childhood as predictors of asthma in adult life.
4. Phelan PD, Robertson CF, Olinsky A. The Melbourne asthma
5. Lowe L, Murray CS, Castronic A, Simpson JM, Kaemn PM,
Woodcock A. Specific airway resistance in 3-year-old children:
asthma, exercise test spirometry, and atopy in school children
7. Weiss ST, Ware JH. Overview of issues in the longitudinal
analysis of respiratory data. Am J Respir Crit Care Med. 1996;
in early life and risk of wheeze and allergy by age 13 years.
9. Standards for the diagnosis and care of patients with chronic
obstructive pulmonary disease (COPD) and asthma. This offi
cial statement of the American Thoracic Society was adopted by
the ATS Board of Directors. Am Rev Respir Dis. 1987;136(1):
225-44.