Teledermatology in paediatrics. Observations in daily clinical practice

Ana Batalla*, Hae Jin Suh-Oh, Teresa Abalde, Laura Salgado-Boquete, Carlos de la Torre

Servicio de Dermatología, Complejo Hospitalario de Pontevedra, Pontevedra, Spain

Received 14 April 2015; accepted 1 July 2015
Available online 30 April 2016

Abstract

Introduction: Teledermatology is a technique that is increasingly being developed. There are many studies that assess this discipline in the general population, but few studies analyse the paediatric population exclusively. The aims of this study are to describe the distribution of diseases consulted through teledermatology, the use of this technique to avoid face-to-face consultations, and the agreement between virtual and face-to-face diagnoses, in the paediatric population.

Material and methods: The work consisted of an observational and retrospective study of the virtual consultations made between May 2011 and January 2015 through a store-and-forward teledermatology programme, involving patients from 0 to 15 years. We collected demographic data, as well as the diagnoses made by the paediatrician who made the virtual consultation, and by the dermatologists who assessed the virtual and the face-to-face consultations, the indication given by the dermatologist who assessed the virtual consultation (discharge or referral), reason for referral, and diagnostic agreement rate.

Results: A total of 183 virtual consultations were analysed. The most frequent diagnoses were inflammatory diseases (39%), benign pigmented lesions (23%), and infectious diseases (20%). Almost half of the virtual consultations (48%) were referred to a face-to-face diagnosis. Diagnostic agreement between the dermatologist who evaluated the virtual consultation and the dermatologist who evaluated the face-to-face consultation was 89%, and 66% between the paediatrician who made the virtual consultation and the dermatologist who assessed it.

* Corresponding author.
E-mail address: anacebey@yahoo.es (A. Batalla).
Teledermatology in paediatrics

Introduction

Teledermatology is an expanding discipline. Because of the importance of images, dermatology is one of the specialties in which it has been most extensively implemented. In general terms there are 2 systems for conducting teledermatology: one by store-and-forward and the other in real time, in which doctors and patients communicate at the same time. Most studies show greater agreement between virtual and face-to-face diagnoses with real-time systems. However, store-and-forward systems are more feasible in day-to-day clinical practice, and are therefore the most widely used.1,2

There are many studies that evaluate various aspects of this technique, such as patient satisfaction, diagnostic agreement with in-person visits and ability to resolve the condition. In general, most of these studies assess all the consultations conducted, which primarily involve adult patients.3,4 There are few observations that focus solely on the paediatric population.

Conclusions: Virtual consultations have a similar disease distribution to conventional (face-to-face) referrals. Approximately half of the virtual consultations do not require a subsequent face-to-face visit. The agreement rate between the diagnoses given by both dermatologists (virtual and face-to-face diagnoses) is high.

© 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

Material and methods

The research consisted of a retrospective observational study of the teleconsultations made to patients in the paediatric age group through a store-and-forward teledermatology system in the Complejo Hospitalario de Pontevedra (EOXI Pontevedra-Salnés). Teledermatology was gradually introduced in Galicia from 2001 and began to operate in our hospital in May 2011. Therefore, the period of our study was from May 2011 to January 2015. The teleconsultations were from paediatric primary care, which in the Autonomous Committee of Galicia comprises children aged from 0 to 15 years inclusive. Through the SIGAP (Integrated Primary Care...
Management System) programme, paediatricians completed a questionnaire containing the basic items in the medical record (clinical history, personal and family history, physical examination, suspected diagnosis and treatments previously administered) and attached one or more clinical images. For each teleconsultation the same programme provided a space for the dermatologist’s response, in which he or she indicated the diagnosis and the treatment plan to be followed. The teledermatology programme (SIGAP) is linked to the electronic medical records (IANUS programme), which facilitates follow-up of subsequent face-to-face consultations. The teleconsultations, from 15 health centres, were randomly assigned to 6 different dermatologists. The face-to-face consultations were scheduled with 8 dermatologists according to the availability of places on the waiting lists.

The following data were collected in the two computer programmes (SIGAP and IANUS): age and sex of the patient, health centre of origin, dermatologists who responded to the teleconsultation and the face-to-face consultation (if required), the diagnosis established by the paediatrician, by the dermatologist through the teleconsultation and by the dermatologist in the face-to-face consultation (if it took place), course of action recommended by the dermatologist through the teleconsultation, reason for deciding on referral for face-to-face consultation, and rate of agreement between the various diagnoses (between those given by the paediatrician and by the dermatologist through the teleconsultation and between those given by the dermatologist in the teleconsultation and by the dermatologist in the face-to-face consultation). The data collection form is shown in Table 1.

Cases in which a second teleconsultation was conducted with the same patient for technical reasons, because of computer errors or the absence of some element of the teleconsultation (lack of images, lack of clinical history) were regarded as redundant teleconsultations and were not taken into account for the final data analysis.

We grouped the diagnoses into seven disease categories: inflammatory conditions, infectious diseases, benign tumours, malignant tumours, benign pigmented lesions, malignant pigmented lesions and “other diagnoses”. Although this classification was arbitrary, it allowed us to have a larger number of patients in each group in order to make comparisons.

As regard the course of action to be determined by the dermatologist who conducted the teleconsultation, the possible options were “discharge” (care was prescribed without need for an in-person visit) or “referral for in-person consultation” (an instruction, whether some kind of care was prescribed or not, to request an appointment for face-to-face dermatological assessment, more or less urgently, depending on the diagnostic judgement). The reasons that led to a recommendation of referral for in-person consultation were classified into need for treatment, for follow-up or for confirmation of diagnosis and/or further tests, low-quality images and lack of dermatoscopical images. We also collected those cases in which “discharge” was recommended but the patients were referred for in-person consultation by the paediatrician.

We defined the degree of agreement as total if the diagnoses made for the same process by the paediatrician and the dermatologist assessing the teleconsultation, or by the

<table>
<thead>
<tr>
<th>Table 1 Data collection questionnaire.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection questionnaire</td>
</tr>
<tr>
<td>Options</td>
</tr>
<tr>
<td>Number of questionnaire</td>
</tr>
<tr>
<td>- Female (0)</td>
</tr>
<tr>
<td>- Male (1)</td>
</tr>
<tr>
<td>- Infectious diseases (2)</td>
</tr>
<tr>
<td>Diagnosis made by the paediatrician</td>
</tr>
<tr>
<td>- Benign tumours (3)</td>
</tr>
<tr>
<td>- Malignant tumours (4)</td>
</tr>
<tr>
<td>- Benign pigmented lesions (5)</td>
</tr>
<tr>
<td>- Malignant pigmented lesions (6)</td>
</tr>
<tr>
<td>- Others (7)</td>
</tr>
<tr>
<td>- Unclassifiable (9)</td>
</tr>
<tr>
<td>Diagnosis made by the dermatologist</td>
</tr>
<tr>
<td>- Infectious diseases (2)</td>
</tr>
<tr>
<td>- Benign tumours (3)</td>
</tr>
<tr>
<td>- Malignant tumours (4)</td>
</tr>
<tr>
<td>- Benign pigmented lesions (5)</td>
</tr>
<tr>
<td>- Malignant pigmented lesions (6)</td>
</tr>
<tr>
<td>- Others (7)</td>
</tr>
<tr>
<td>- Unclassifiable (9)</td>
</tr>
<tr>
<td>Recommendation at the teleconsultation</td>
</tr>
<tr>
<td>- Discharge (1)</td>
</tr>
<tr>
<td>- Referral for in-person consultation (2)</td>
</tr>
<tr>
<td>- Unclassifiable (9)</td>
</tr>
<tr>
<td>- Follow-up (1)</td>
</tr>
<tr>
<td>- Need for treatment (2)</td>
</tr>
<tr>
<td>- Confirmation/Need for additional tests (3)</td>
</tr>
<tr>
<td>Reason for referral to hospital</td>
</tr>
<tr>
<td>- Low-quality images (4)</td>
</tr>
<tr>
<td>- Need for dermatoscopy (5)</td>
</tr>
<tr>
<td>- By decision of paediatrician (6)</td>
</tr>
<tr>
<td>- Unclassifiable (9)</td>
</tr>
<tr>
<td>- Infectious diseases (1)</td>
</tr>
<tr>
<td>- Benign tumours (3)</td>
</tr>
<tr>
<td>- Malignant tumours (4)</td>
</tr>
<tr>
<td>- Benign pigmented lesions (5)</td>
</tr>
<tr>
<td>- Malignant pigmented lesions (6)</td>
</tr>
<tr>
<td>- Others (7)</td>
</tr>
<tr>
<td>- Resolution of the condition at the time of the in-person consultation (8)</td>
</tr>
<tr>
<td>- Unclassifiable (9)</td>
</tr>
<tr>
<td>- The patient did not attend the in-person consultation (10)</td>
</tr>
</tbody>
</table>
Computer errors \(n = 7 \), we finally evaluated 183 teleconsultations.

The mean age and standard deviation for the study population was \(9 \pm 5 \) years, and 44\% \((81/183) \) of the patients were male.

On the basis of the diagnosis made by the dermatologist in the teleconsultation, the most frequent diagnostic group was inflammatory conditions (39\%; 66/169), followed by benign pigmented lesions (23\%; 39/169) and infectious diseases (20\%; 34/169) (Fig. 1). None of the consultations fell into the malignant pigmented lesions or malignant tumours groups. Table 2 indicates in detail the diseases assessed according to the diagnoses made by the dermatologist evaluating the teleconsultation. Of the paediatricians, 23\% (42/183) did not indicate the suspected diagnosis on the teleconsultation form. In 9 of the 183 teleconsultations (5\%) the evaluating dermatologist did not establish a diagnosis owing to the clinical history form not having been completed or to the poor quality of the image. In all these cases referral for face-to-face consultation or a second teleconsultation was recommended.

Slightly over half the teleconsultations (52\%; 91/183) were resolved through the virtual programme, while 48\% required an in-person visit (84/183). The percentages of discharges and referrals by disease group are shown in Fig. 2. The group with the highest percentage of cases in which referral was avoided was infectious diseases (67\%), followed by the inflammatory conditions and benign pigmented lesions groups, which had equally high percentages of discharges (56\%).

The most common reason that led the dermatologist conducting the teleconsultation to recommend an in-person consultation was the need for "diagnostic confirmation" in the face-to-face consultation (52\%; 49/94). The distribution of this and the other reasons is shown in Fig. 3.

Diagnostic agreement was greater between the virtual diagnosis made by the dermatologist in the teleconsultation and the diagnosis established in the in-person dermatology consultation (total, 55\% [36/65]; partial, 34\% [22/65]; no correlation, 11\% [7/65]) than between the diagnosis indicated by the paediatrician and that made by the dermatologist in the teleconsultation (total, 56\% [75/133]; partial, 10\% [13/133]; no correlation, 34\% [45/133]).
Table 2 Diagnoses made according to the assessment of the dermatologist conducting the teleconsultation.

Inflammatory (n = 66)
- Eczemas (n = 30)
 - Unspecified eczema/eczematoid dermatitis (n = 10)
 - Atopic eczema (n = 5)
 - Contact dermatitis (n = 5)
 - Prurigo (n = 5)
 - Lichenified eczema (n = 3)
 - Seborrhoeic eczema (n = 3)
 - Frictional dermatitis (n = 2)
 - Dyshidrotic eczema (n = 2)
- Blaschkitis (n = 5)
- Acne (n = 4)
- Non-infectious nail dystrophies (n = 4)
- Alopecia areata (n = 3)
- Lichen sclerosus (n = 3)
- Post-inflammatory hypopigmentation (n = 3)
- Non-infectious granulomas (n = 2)
- Pityriasis rosea (n = 2)
- Psoriasis (n = 1)
- Eosinophilic pustulosis (n = 1)
- Annular erythema (n = 1)
- Collagenosis (n = 1)
- Milia (n = 1)

Benign pigmented (n = 39)
- Melanocytic naevi (type unspecified) (n = 26)
 - Halo naevus (n = 5)
 - Spitz naevus (n = 3)
 - Congenital melanocytic naevus (n = 2)
 - Blue naevus (n = 2)
 - Meyerson’s naevus (n = 1)

Infectious (n = 34)
- Viral (n = 19)
 - Warts (n = 13)
 - Molluscum (n = 2)
 - Enterovirus (n = 1)
 - Gianotti-Crosti syndrome (n = 1)
 - Herpes (n = 2)
- Myotic (n = 8)
 - Tinea (n = 5)
 - Tinea unguium (n = 2)
 - Pityriasis versicolor (n = 1)
- Bacterial (n = 6)
 - Impetigo (n = 3)
 - Folliculitis (n = 2)
 - Pitted keratolysis (n = 1)
- Parasitic (n = 1)
 - Scabies

Benign tumours (n = 19)
- Sebaceous naevus (n = 7)
- Pilomatrixoma (n = 3)
- Childhood haemangioma (n = 2)
- Pyogenic granuloma (n = 2)
- Angioma (n = 1)
- Angiokeratoma (n = 1)

Table 2 (Continued)

Dermatofibroma (n = 1)
Ebulligenous naevi (n = 1)
Mastocytosis (n = 1)

Others (n = 11)
- Connective tissue disorders (scars, stretch marks) (n = 2)
- External agents (n = 2)
- Genodermatoses (n = 2)
- Vascular malformations (n = 2)
- Embryonic fusion defects (n = 1)
- Pyramidal protrusion (n = 1)

Indications of systemic or metabolic disease (n = 1)

![Figure 2](image1.png) Ability of teledermatology to resolve conditions, by disease groups.

![Figure 3](image2.png) Reasons for referral for in-person consultation. This graph includes both patients from teleconsultations referred for in-person consultation (n = 84) and those that finally received such consultation by the decision of the paediatrician (n = 10).

Discussion

There are few studies that evaluate the use of teledermatology in the paediatric age group. Moreover, these studies vary in the ages they cover and the objectives they assess.1,2,5-7
In general terms, as is the case when it is applied to the population in all age ranges, paediatric teledermatology has proved to be a useful tool as a filter, leading to a decrease in face-to-face consultations and shortening the times between referral and intervention. It facilitates increased access to specialist care and reduces the time patients spend travelling to hospital. Its potential for training has also been heightened.3,5,7

It is difficult to compare the frequency of diseases in teledermatology consultations with that observed in face-to-face consultations due to the differences in diagnostic classifications between these two modes of working. In developed countries, atopic eczema, melanocytic naevi and viral warts tend to be the predominant reasons for in-person visits. Studies on Spanish paediatric patients observed that eczemas, of whatever origin, constituted the most frequent reason for in-person consultation in a paediatric dermatology specialty clinic, followed by infectious diseases (predominantly warts, molluscum infections and scabies), naevi and tumours (benign and malignant).7 More recently, another epidemiological study determined that the tumours group (represented primarily by melanocytic naevi) was in first place, followed by infections (predominantly viral warts) and eczemas (with atopic eczema as the most frequent group).4 In teledermatology, on the basis of the diagnosis made by the dermatologist in the teleconsultation, atopic eczema, naevi, common warts and molluscum infections are also the most common diagnoses.5,6 Similarly, in our study, the predominant groups were inflammatory conditions (mostly represented by eczemas), benign pigmented lesions, and infections (predominantly viral warts). These findings indicate that the reasons for consultation via teledermatology show a similar distribution of diseases to those referred through in-person visits.5

In the adult population, various national studies describe the type of diseases involved in teledermatology consultations. In one that included 917 patients, the highest frequency was observed in benign tumoral conditions (48%), followed by malignant tumoral conditions (32%); the remaining diagnostic groups (20%) were not specified. Seborrheic keratoses and melanocytic naevi, in the first group, and actinic keratoses followed by basocellular carcinoma, in the second, were the most common diagnoses.8 In a later study, but with a smaller number of patients (n = 100), the predominant group was inflammatory conditions (22%), followed by tumoral diseases (20%) (with a higher percentage of benign tumours) and, further behind, infectious diseases (8%). The most prevalent diagnoses in each group were eczemas, melanocytic naevi and seborrheic keratoses, and viral warts, respectively.9

With regard to the percentage of referrals, Chen et al. observed the teleconsultations performed with 429 children under the age of 12 years. Only 6% were recommended to attend a face-to-face consultation and 1% were asked to have a second teleconsultation.5 The results of our study differ greatly from these figures and are closer to the percentage of discharges observed in teleconsultations in a predominantly adult population, which vary between 20% and 74% according to the series.10-14

Diagnostic agreement between virtual and in-person consultations is high. In studies that assess the population in all age groups, rates vary between 60% and 80% with respect to total agreement and 70% and 90% for partial agreement.3,15 In the paediatric population these percentages are also high. In a study that included 135 patients under the age of 18 years, a rate of agreement of 82% was observed between virtual and in-person consultations. The rate was lower (69%) in cases where one dermatologist conducted the teleconsultation and another carried out the face-to-face consultation.3 The second figure can be explained by the hypothesis that one always has a tendency to agree with oneself.1 However, this did not pose a problem in our study, since the virtual and in-person consultations were randomly distributed among the participating dermatologists.

Other studies, in line with our findings, have shown lower rates of agreement between the doctor who performed the teleconsultation and the dermatologist who evaluated it (58% agreement [48% total, 10% partial]).5

One of the main limitations of our study is the assumption that the diagnosis established by the dermatologist who evaluated the teleconsultation was correct compared with that delivered by the paediatrician. We believe that this does not affect the results obtained to any great extent, given the high rate of agreement (89%, taking into account both total and partial agreement) between the diagnoses made by the two dermatologists. It may also happen that to a certain extent the diagnostic judgement established by the paediatrician influences the diagnosis made by the dermatologist in the teleconsultation. In addition, we must draw attention to the small simple size, which makes it difficult to draw comparisons between subgroups. Furthermore, the retrospective design of our study, based solely on a review of computerised data, did not allow us to evaluate other aspects of this technique, such as the degree of satisfaction of the parents or of the paediatricians who carried out the teleconsultations. Finally, our results can only be extrapolated to our National Health System and those with a similar structure.

To conclude, we have observed that the diseases involved in teledermatology consultations show a similar distribution to in-person consultations. Approximately half the teleconsultations did not require subsequent in-person evaluation, with the infectious diseases group showing the highest percentage of avoidance. The rate of agreement between the dermatologist who conducted the teleconsultation and the one who performed the face-to-face consultation was high.

Conflicts of interest

The authors have no conflicts of interest to declare.

References